Highly selective fluorescent chemosensor for Zn2+ derived from inorganic-organic hybrid magnetic core/shell Fe3O4@SiO2 nanoparticles
نویسندگان
چکیده
Magnetic nanoparticles with attractive optical properties have been proposed for applications in such areas as separation and magnetic resonance imaging. In this paper, a simple and novel fluorescent sensor of Zn2+ was designed with 3,5-di-tert-butyl-2-hydroxybenzaldehyde [DTH] covalently grafted onto the surface of magnetic core/shell Fe3O4@SiO2 nanoparticles [NPs] (DTH-Fe3O4@SiO2 NPs) using the silanol hydrolysis approach. The DTH-Fe3O4@SiO2 inorganic-organic hybrid material was characterized by transmission electron microscopy, dynamic light scattering, X-ray power diffraction, diffuse reflectance infrared Fourier transform, UV-visible absorption and emission spectrometry. The compound DTH exhibited fluorescence response towards Zn2+ and Mg2+ ions, but the DTH-Fe3O4@SiO2 NPs only effectively recognized Zn2+ ion by significant fluorescent enhancement in the presence of various ions, which is due to the restriction of the N-C rotation of DTH-Fe3O4@SiO2 NPs and the formation of the rigid plane with conjugation when the DTH-Fe3O4@SiO2 is coordinated with Zn2+. Moreover, this DTH-Fe3O4@SiO2 fluorescent chemosensor also displayed superparamagnetic properties, and thus, it can be recycled by magnetic attraction.
منابع مشابه
Highly selective fluorescent chemosensor for detection of Fe(3+) based on Fe3O4@ZnO.
The combination of fluorescent nanoparticles and specific molecular probes appears to be a promising strategy for developing fluorescent nanoprobes. In this work, L-cysteine (L-Cys) capped Fe3O4@ZnO core-shell nanoparticles were synthesized for the highly selective detection of Fe(3+). The proposed nanoprobe shows excellent fluorescent property and high selectivity for Fe(3+) due to the binding...
متن کاملSynthesis and Characterization of a Novel Fe3O4-SiO2@Gold Core-Shell Biocompatible Magnetic Nanoparticles for Biological and Medical Applications
Objectives: The study of core-shell magnetic nanoparticles has a wide range of applications because of the unique combination of the nanoscale magnetic core and the functional shell. Characterization and application of one important class of core-shell magnetic nanoparticles (MNPs), i.e., iron oxide core (Fe3O4/γ-Fe2O3) with a silica shell and outer of gold (Fe3O4-SiO2@Gold (FSG)) in Boron Neut...
متن کاملDesign, Optimization Process and Efficient Analysis for Preparation of Copolymer-Coated Superparamagnetic Nanoparticles
Magnetic nanoparticles (MNPs) are very important systems with potential use in drug delivery systems, ferrofluids, and effluent treatment. In many situations, such as in biomedical applications, it is necessary to cover inorganic magnetic particles with an organic material, such as polymers. A superparamagnetic nanocomposite Fe3O4/poly(maleic anhydride-co-acrylic acid) P(MAH-co-AA) with a core/...
متن کاملFe3O4/SiO2/CeO2 Core-Shell Magnetic Nanoparticles as Photocatalyst
The Fe3O4/CeO2 magnetic photocatalyst was prepared by coating directly onto the surface of magnetic Fe3O4 particles. However a direct contact of CeO2 onto the surface of magnetic Fe3O4 particles presented unfavorable heterojunction, thus the SiO2 barrier layer between magnetic Fe3O4 and CeO2 was prepared as a core-shell stucture to reduce the negative effect by combining three steps of the hydr...
متن کاملInorganic-organic hybrid nanomaterial (Fe3O4@SiO2-AQ): A retrievable heterogeneous catalyst for the green synthesis of 4H-chromenes
Preparation of 4-aminiquinaldine grafted on silica-coated nano-Fe3O4 particles (Fe3O4@SiO2-AQ) as a novel retrievable heterogeneous nanocatalyst is described. This novel hybrid nanomaterial was applicated for the green synthesis of substituted 2-amino-4H-chromenes via the one-pot condensation reaction of an aldehyde, malononitrile ...
متن کامل